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Abstract

In this paper, the parameters of vibration control system of smart beams, including the placement and
size of piezoelectric sensors and actuators (S/As) bonded on smart beams and the feedback control gains of
the control system, have been simultaneously optimized for vibration suppression of beam structures. Since
the sizes of the S/As are selected from a prescribed patch pool provided by the manufactures, the size design
variable is then discrete, but the locations and feedback gains are continuous. Thus, the resulting
optimization problem has discrete-continuous design variables which is difficult for the conventional
optimization methods to solve. An integer-real-encoded genetic algorithm has thus been developed to
search for the optimal placement and size of the piezoelectric patches as well as the optimal feedback
control gains. The criterion based on the maximization of energy dissipation was adopted for the
optimization of the control system. The optimal distributions of the piezoelectric patches based on specific
controlled vibration modes have also been addressed. The results showed that the control effect could be
significantly enhanced with appropriate distribution of piezoelectric patches and selection of feedback
control gains, and meaningful observations have been obtained for practical design.
r 2004 Elsevier Ltd. All rights reserved.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Vibration control of flexible structures has been a major research topic over the past few
decades. In recent years, a great number of research results have been produced in active
structural vibration control using piezoelectric materials as distributed sensors and actuators
(S/As). The piezoelectric S/As have to be of suitable size and be appropriately located to ensure
the maximum effectiveness for optimal vibration control.
In recent years, efforts have been mainly concentrated on finding the optimal size and location

of the S/As. Crawley and de Luis [1] were the first to address the criterion for finding the optimal
location of a piezoelectric actuator for a cantilever beam. Baz and Poh [2] solved the problem of
location optimization of an actuator with pre-selected size. Devasia et al. [3] considered the
problem of placement and sizing optimization of distributed piezoelectric actuators on a
uniform beam. Dhingra and Lee [4] addressed the influence of S/A locations and feedback gains
on the optimum design of actively controlled structures. For the case of optimization of
actuator location, different cost functions and performance measures have been used. Some
researchers [5,6] proposed to maximize the controllability criterion using a measure of the
gramian matrix. A quadratic cost function taking into account the measurement error and control
energy has also been proposed [7,8]. As can be found from the available literature, most attention
has been paid on the geometric optimization of S/As such as their placement, size as well as
thickness; but integrated control system optimization considering the placement and size of the
piezoelectric patches and the feedback control gains of the control system has rarely been
investigated.
In this study, the geometric distribution of the piezoelectric patches including the

placement and size, and the feedback control gains of the actuators, have been simultaneously
optimized to achieve the goal of optimal vibration suppression. The energy dissipation method [9]
has been adopted as the criterion for the optimization of the control system based on the
maximization of dissipation energy due to the control action. Furthermore, the optimal
distribution of the piezoelectric patches based on different controlled vibration modes has also
been addressed.
Recently, genetic algorithms (GAs) as an optimization technique have been applied to this kind

of optimization problems [10–12]. Much effort has been concentrated on finding the optimal size
and placement of the piezoelectric patches, but most of them prescribed the amount and size of
the piezoelectric patches in advance while trying to optimize the placement. The integrated size
and placement optimization as well as the feedback control gains has seldom been carried out.
In this study, the locations of S/As and feedback gains are defined as continuous variables,

while the sizes of S/As are selected from a prescribed patch pool which includes a series of
standard patches provided by the manufacturers, implying that the size design variable is discrete.
Thus, the resulting optimization problem has discrete and continuous design variables, which is
difficult for the conventional optimization methods to solve. Therefore, an integer–real-encoded
GA has been developed to solve this problem. A simply supported beam has been exemplified to
demonstrate the feasibility of this method and the effectiveness of vibration suppression. The
results showed that the control effect could be significantly enhanced with appropriate
distribution of piezoelectric patches and selection of feedback control gains. Furthermore, some
heuristic observations have been obtained for practical design.
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Fig. 1. Beam model with sensors and actuators.
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2. Modeling of sensing and actuating

Consider a beam model, as shown in Fig. 1, bonded with piezoelectric actuators on the upper
surface and sensors on the lower surface. It is well known that collocated sensors and actuators
are advantageous from the viewpoint of stability; hence in this study, collocated S/As are
considered. Assume that m pieces of collocated S/As are bonded on the beam. The piezoelectric
material is supposed to be transversely isotropic and polarized in the z direction.
When external charges are exerted on the piezoelectric actuators, the motion equation of the

beam can be expressed as [13]

EbJb
q4w
qx4

þ rbAb
q2w
qt2

� b
Xm

i¼1

q2Ma
i

qx2
¼ 0; (1)

where w is the deflection of the beam; Eb; Jb;rb; b and Ab are Young’s modulus, inertia moment,
density, width and cross-sectional area of the beam, respectively; and Ma

i is the force moment
induced by actuator i; which can be written as

Ma
i ¼ rad31Epf

a
i ðx; tÞ; (2)

where d31 and Ep are the piezoelectric strain constant and Young’s modulus of the actuators,
respectively; fa

i ðx; tÞ is the voltage applied to actuator i; and ra denotes the distance measured
from the neutral surface of the beam to the mid-plane of the actuator.
The voltage distribution of actuator i can be expressed as

fa
i ðx; tÞ ¼ fa

i ðtÞ½Hðx � xi1Þ � Hðx � xi2Þ�; (3)

in which Hð�Þ is the Heaviside step function; and xi1; xi2 are the coordinates of the two ends of
actuator i:
Using the modal decomposition method and truncating the modes at n; the deflection w of the

beam can be written as

wðx; tÞ ¼
Xn

j¼1

UjðxÞZjðtÞ; (4)

where UjðxÞ is the normalized orthogonal modal shapes and ZjðtÞ is the modal amplitudes.
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Substituting Eqs. (2)–(4) into Eq. (1) and projecting onto the jth mode yield the following
equation:

€ZjðtÞ þ o2
j ZjðtÞ ¼ Ka½U

0
jðxi2Þ � U 0

jðxi1Þ�f
a
i ðtÞ ð j ¼ 1; 2; . . . ; nÞ; (5)

where oj is the natural frequency which can be expressed as o2
j ¼

R L

0 EbJbU 00
j U 00

j dx; L is the length
of the beam; Ka ¼ brad31Ep; and the primeð0Þ indicates the gradient of the function.
When the beam deforms, the average output voltage fs

i over the ith sensor with an effective
electrode surface Se can be calculated as

fs
i ¼ �

bhs

Se

Z xi2

xi1

h31r
s q

2w

qx2

� �
dx ¼ Ks

Xn

j¼1

½U 0
jðxi2Þ � U 0

jðxi1Þ�ZjðtÞ; (6)

where Ks ¼ �½hs=ðxi2 � xi1Þ�h31r
s; hs is the thickness of the sensor, h31 is the piezoelectric constant,

and rs denotes the distance measured from the neutral surface of the beam to the mid-surface of
the sensor.
Introducing state vector v ¼ ½Z1; Z2; . . . ; Zn; _Z1; _Z2; . . . ; _Zn�

T; the vibration and sensing equations,
i.e., Eqs. (5) and (6), can be transformed into

_v ¼ Av þ B/a;

/s ¼ Cv; ð7Þ

in which the structural damping is included and

B ¼
0n
m

~B

� �
; C ¼ ½ ~C 0m
n�; (8)

~B ¼

B11 B12 . . . B1m

B21 B22 . . . B2m

..

.

Bn1 Bn2 . . . Bnm

2
66664

3
77775; ~C ¼

C11 C12 C1n

C21 C22 . . . C2n

..

. ..
. ..

.

Cm1 Cm2 Cmn

2
66664

3
77775; (9)

Bji ¼ Ka½U
0
jðxi2Þ � U 0

jðxi1Þ�; Cij ¼ Ks½U
0
jðxi2Þ � U 0

jðxi1Þ�; (10)

A ¼
0n
n In
n

�X2
�21X

� �
; /a ¼

fa
1

fa
2

..

.

fa
m

2
66664

3
77775; /s ¼

fs
1

fs
2

..

.

fs
m

2
66664

3
77775;

X ¼

o1

o2

. .
.

on

2
66664

3
77775; 1 ¼

z1
z2

. .
.

zn

2
66664

3
77775; (11)
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where zj is the damping ratio of jth vibration mode of the structure. Eq. (7) is the state-space
equation of the beam model.
3. Energy-based approach for optimal design

In this section, energy-based consideration [9] for the linear dynamic model, i.e., Eq. (7), is
taken into account. The most attractive methodology that accounts for transient vibration
responses is characterized by the maximization of the dissipation energy extracted by the feedback
control system.
When a constant negative velocity feedback is considered the input control vector can be

expressed as follows:

Va ¼ �Gs
_/s ¼ �GC _v; (12)

where G is the feedback gain matrix. The corresponding closed-loop state-space equation is

_v ¼ Av; (13)

where the closed-loop system matrix A is given by

A ¼
0n
n In
n

�X2
� ~BG ~C� 21X

� �
;

where ~B; ~C; X; and 1 are defined in Eqs. (9) and (11).
The objective of optimization is to maximize the energy dissipated by the active controller. The

more the energy dissipated by the control system, the less the energy is stored in the system. This
can be used to simultaneously optimize the geometry of S/As and the values of feedback gains.
The integrated total energy stored in the system can be written as

W ¼

Z 1

0

vT ~Qvdt; (14)

where ~Q is defined as

~Q ¼
X2 0

0 In
n

" #
:

The application of the standard state transformation techniques to Eq. (14) yields

W ¼ �vTðt0ÞPvðt0Þ; (15)

where vðt0Þ is the initial state and P is the solution of the following Lyapunov equation:

ATPþ PA ¼ ~Q: (16)

Thus, the problem can be expressed as a nonlinear optimization problem with constraints

Minimize Jð~X;G; ~LÞ

subject to 0pxi1; xi2pLb; xi1 � xi2p0;GijpGu ði; j ¼ 1; 2; . . . ;mÞ;

xi2 � xðiþ1Þ1p0 ði ¼ 1; 2; . . . ;m � 1Þ; ð17Þ
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where xi1 ¼ xi � Li=2; xi2 ¼ xi þ Li=2; ~X is the vector of the m location variables xi; ~L is the
vector of the m size variables Li; Gu is the upper bound of the feedback control gains and Gij 2 G:
4. General formulation for integer-real-encoded GAs

GAs have recently been recognized as a promising tool for numerical optimization of structural
design problems. They are highly parallel, guided random, adaptive search techniques which were
originally derived from the Darwinian evolutionary principle of ‘‘survival-of-the-fittest’’. They are
superior to the traditional optimization methods based on gradient of the objective function as the
search is not biased toward locally optimal solutions.
Since GAs can be directly used for unconstrained problems only, our optimal design problem

needs to be transformed into an unconstrained problem by introducing the exterior penalty
functions. Mathematically, the evaluation of the objective function can be represented by
fð~X;G; ~LÞ in the following form:

fð~X;G; ~LÞ ¼ Jð~X;G; ~LÞ þ
Xm

i¼1

ri½minf0; ðxi2 � xi1Þg�
2 þ

Xm�1

i¼1

ri½minf0; ðxðiþ1Þ1 � xi2Þg�
2

 !
; (18)

where ri is the penalty parameter. When ri ! 1; the solution of Eq. (18) tends to be the solution
of the original problem defined in Eq. (17).
In this study, assume that a series of piezoelectric patches with standard sizes provided by the

manufacturers are used for the optimal control. The patch pool can be defined as a set of patch
sizes as S ¼ fSkg ðk ¼ 0; 1; . . . ; p � 1Þ; in which there are p types of patch available for selection.
The size variables are hence discrete and the resulting optimization problem is a discrete–contin-
uous problem, which is difficult for the conventional optimization methods to solve. Thus, an
integer–real-encoded GA is developed and implemented.
The fundamental mechanisms leading the GA search process are the equivalents of natural

selection, crossover and mutation. GA deals with a population that is a collection of individuals
and the chromosome of each individual represents a candidate solution. For any GA, a
chromosome representation is needed to describe each individual in the population of interest.
Each individual or chromosome is made up of a sequence of genes from a certain alphabet such as
binary digits, floating point numbers, integers, etc. Michalewicz [14] has done extensive
experimentation comparing real-encoded and binary GA, and showed that the former is more
efficient in terms of CPU time. He also showed that a real-encoded representation moves the
problem closer to the problem representation which offers higher precision with more consistent
results across replications.
A typical chromosome for the integer–real-encoded GA can be illustrated in Fig. 2, where the

location and feedback gains variables are encoded with real numbers but the size variables are
encoded with integers I i ði ¼ 1; 2; . . . ;mÞ; which denote the sequence number of the ith patch in
Fig. 2. A typical chromosome in integer–real-encoded GA.
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the patch pool. The range of I i is ½0; p � 1� and the size of the ith patch is SIi
: In this study,

different genetic operators, i.e., mutation and crossover, are employed for the real- and integer-
encoded parts of one chromosome, respectively. The uniform mutation and the whole
arithmetical crossover are adopted for the real-encoded part. Let ai and bi be the lower and
upper bounds, respectively, for the ith design variable. Uniform mutation sets the new variable
value equal to Uðai; biÞ; which is a random number uniformly distributed between ai and bi: The
whole arithmetical crossover produces two complimentary linear combinations of the parents as

~X ¼ rX þ ð1� rÞY ;

~Y ¼ ð1� rÞX þ rY ;

where r ¼ Uð0; 1Þ; X and Y are the parents, and ~X and ~Y are the offspring.
The mutation and crossover for the integer-encoded part are similar with the standard binary-

encoded GA. The only difference is that the base of the integer-encoded GA is p:
5. Numerical example

In this section, based on the model and optimization criterion proposed above, an illustrative
example of a simply supported beam is presented here to demonstrate the feasibility and
effectiveness of the proposed method for optimal vibration control. The characteristic data of the
beam are listed in Table 1 [13]. In the following design, the first four vibration modes are
considered to be the controlled modes. The initial conditions of the generalized coordinate vector
are given by

gð0ÞT ¼ ½0 0 0 0�;

_gð0ÞT ¼ ½0:2 0:4 0:6 0:8�

to make the first four vibration modes have roughly equivalent kinetic energy stored in the system
if no control applied.
Table 1

Structure and piezoelectric patch specifications

Item Beam Actuators Sensors

Mass density ðkg=m3Þ 1190 1800 1800

Young’s modulus (GPa) 3.1028 2 2

Poisson’s ratio 0.3 0.3 0.3

Piezoconstant d31 (m/V) 2:3
 10�11 2:3
 10�11

Piezoconstant h31 (V/m) 4:32
 108

Thickness (m) 1:6
 10�3 4
 10�5 4
 10�5

Length (m) 0.5

Width (m) 0.01

Damping ratio 0.01
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For a simply supported beam, the normalized modal shape can be expressed as UjðxÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=ðrbAbLÞÞ

p
sinð jpx=LÞ; and the natural frequency is oj ¼ ð j2p2=L2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EbJb=ðrbAb

p
Þ; where j ¼

1; 2; . . . ; n:
The optimization problem as previously formulated is a nonlinear optimization with

constraints. In this case, besides the geometric constraints, a simple bound is imposed on the
feedback control gain matrix G; i.e., 0oGijp0:4: In order to ensure the system to be
asymptotically stable, an additional constraint is needed, i.e., detðGÞ40; where detðGÞ represents
the determinant of the matrix G:
The GA control parameters are as follows. The population size, the crossover probability, the

mutation probability, and the maximum number of generations are set as 200, 0.8, 0.05 and 300,
respectively.

5.1. Results of transient response control

In this case, the patch pool is defined as Sk ¼ 0:05ðk þ 1Þ; k ¼ 0; 1; . . . ; 9: To control the
transient response of the simply supported beam, three cases with one to three pieces of
piezoelectric patch have been studied. In these cases, the responses of the beam are obtained by
the superposition of the first four vibration modes. Thus, the transient response control of the
beam implies the simultaneous control of the first four vibration modes. The optimization results
are shown in Table 2. The time behaviors of the vibration modes with and without control using
one to three pieces of piezoelectric patch are shown in Figs. 3–6. From Table 2 and Figs. 3–6, it is
apparent that the speed of decay of the vibration increases when more patches are used. This
implies that the vibration of the structure can be controlled more effectively by using more
patches, with the optimized placement and size, as well as the optimized feedback control gains.

5.2. Results of optimal control of specific vibration modes

In order to investigate the optimal distribution of the piezoelectric patches for specific vibration
modes, two cases, Case 1 to consider one specific vibration mode and Case 2 to consider the first
Table 2

Optimal placement and size of S/As and feedback gain

Number of Placement and size of Feedback Objective

patches patches xiðLiÞ (m) gain matrix Function

m /ð~X;G; ~LÞ

1 0.0768 (0.1) [0.4] 0.1922

2 0:0750 ð0:1Þ

0:3544 ð0:15Þ

0:4 0:4

0 0:4

� �
0.1634

3 0:0792 ð0:1Þ

0:1793 ð0:1Þ

0:4138 ð0:15Þ

0:4 0 0

0 0:4 0:0342

0 0 0:4

2
64

3
75

0.1388
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Fig. 3. Time response of 1st mode with different number of patches.

Fig. 4. Time response of 2nd mode with different number of patches.
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several vibration modes simultaneously, have been investigated. In these cases, the feedback
control gain matrix G is set as a constant 0.4 to emphasize the optimal distribution of the
piezoelectric patches. Moreover, the sizes of the patches are not confined to a patch pool. Instead,
they are continuous variables.

Case 1: To consider one specific vibration mode: The optimal geometric distributions of the
piezoelectric patches are shown in Table 3. It can be found from Table 3 that, for one specific
vibration mode, no matter how many piezoelectric patches are used, the optimal distributions of
the piezoelectric patches should be located within the regions separated by the vibration nodal
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Fig. 5. Time response of 3rd mode with different number of patches.

Fig. 6. Time response of 4th mode with different number of patches.

Y. Yang et al. / Journal of Sound and Vibration 282 (2005) 1293–13071302
lines. Furthermore, there exists a cut-off number of patches for one specific mode. If more patches
are used compared with this number, the control performance can only be improved slightly.
Actually, this cut-off number equals to the number of regions separated by the vibration nodal
line(s) of this mode. The cut-off numbers of patches for the 1st, 2nd, 3rd, and 4th vibration modes
are 1, 2, 3, and 4, respectively.
The observation that piezoelectric patches should be separated by nodal lines may be physically

explained by the following two points. First, if a piezoelectric sensor is located across the nodal
line, the output voltage will decrease because the two sides of the nodal line will generate opposite
charges over the sensor which counteract each other. Thus, the sensor signal fed back to the
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Table 3

Optimal placement and size of S/As for unique vibration mode

Patch Mode

1st 2nd 3rd 4th

xi12xi2 (m) f xi12xi2 (m) f xi12xi2 (m) f xi12xi2 (m) f

1 0:064520:4355 0.0533 0:282220:4678 0.0439 0:188220:3118 0.0373 0:141120:2339 0.0324

2 0:067820:3966

0:396620:4670

0.0530 0:032220:2178

0:282220:4678

0.0324 0:021520:1452

0:354820:4785

0.0257 0:016120:1088

0:266120:3588

0.0213

3 0:037520:1190

0:119020:3814

0:381420:4626

0.0527 0:032220:2178

0:283420:4547

0:454720:4854

0.0322 0:021520:1452

0:188220:3118

0:354820:4785

0.0196 0:016120:1088

0:141120:2338

0:391120:4839

0.0158

4 0:028020:0864

0:086420:1553

0:155320:3769

0:376920:4613

0.0526 0:033420:2046

0:204620:2353

0:267420:3046

0:304620:4659

0.0320 0:022720:1305

0:130520:1552

0:188220:3118

0:354820:4785

0.0195 0:016120:1089

0:141120:2339

0:266120:3589

0:391120:4839

0.0126

5 0:025820:0794

0:079420:1407

0:140720:3765

0:376520:4298

0:429820:4770

0.0525 0:018920:6000

0:600020:1907

0:190720:2313

0:267320:3043

0:304320:4659

0.0317 0:013220:0421

0:042120:1437

0:178220:2028

0:202820:3106

0:354820:4785

0.0194 0:016120:1089

0:135420:1583

0:158320:2327

0:266120:3589

0:391120:4839

0.0126

6 — — 0:018320:0578

0:057820:2004

0:200420:2341

0:262220:2874

0:287420:3138

0:313820:4654

0.0317 0:022520:1336

0:133620:1560

0:179120:2063

0:206320:2938

0:293820:3209

0:354820:4785

0.0192 0:017020:0984

0:098420:1165

0:141120:2339

0:267020:3480

0:348020:3664

0:391120:4839

0.0125

7 — — — — — — 0:009320:0296

0:029620:0953

0:095320:1156

0:133620:1522

0:152220:2330

0:266120:3589

0:391120:4839

0.0124
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actuator will decrease or even become nil. Accordingly, the control force generated by the
actuator will become smaller and the control effect will be impaired. Second, at both sides of the
nodal line, the structure vibrates at opposite directions. If a piezoelectric actuator is located across
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Table 4

Optimal placement and size of S/As for combined vibration mode

Patch Modes

1st 1st and 2nd 1st, 2nd, and 3rd 1st, 2nd, 3rd, and 4th

xi12xi2 (m) f xi12xi2 (m) f xi12xi2 (m) f xi12xi2 (m) f

1 0:064520:4355 0.0533 0:034920:2442 0.1049 0:024520:1730 0.1500 0:019020:1354 0.1911

2 0:067820:3966

0:396620:4670

0.0530 0:036420:2500

0:250020:4636

0.0873 0:025120:1797

0:320320:4749

0.1238 0:019420:1407

0:359020:4805

0.1560

3 0:037520:1190

0:119020:3814

0:381420:4626

0.0527 0:038120:2137

0:213720:2865

0:286520:4619

0.0857 0:027520:1810

0:181020:3206

0:320620:4724

0.1090 0:020720:1375

0:137520:2592

0:348420:4795

0.1364

4 0:028020:0864

0:086420:1553

0:155320:3769

0:376920:4613

0.0526 0:038420:1937

0:193720:2500

0:250020:3063

0:306320:4616

0.0852 0:027820:1663

0:166320:2490

0:249020:3332

0:333220:4722

0.1066 0:022320:1422

0:142220:2504

0:250420:3580

0:358020:4775

0.1229

5 0:025820:0794

0:079420:1407

0:140720:3765

0:376520:4298

0:429820:4770

0.0525 0:022220:0717

0:071720:1944

0:194420:2505

0:250520:3067

0:306720:4616

0.0848 0:028320:1511

0:151120:2094

0:209420:2907

0:290720:3491

0:349120:4717

0.1052 0:022520:1354

0:135420:2184

0:218420:2812

0:281220:3647

0:364720:4774

0.1203

6 — — 0:022320:0717

0:071720:1941

0:194120:2500

0:250020:3059

0:305920:4283

0:428320:4778

0.0844 0:028320:1415

0:141520:1914

0:191420:2496

0:249620:3083

0:308320:3584

0:358420:4717

0.1046 0:022620:1239

0:123920:1706

0:170620:2492

0:249220:3260

0:326020:3752

0:375220:4772

0.1187

7 — — — — 0:017220:0560

0:056020:1449

0:144920:1945

0:194520:2540

0:254020:3104

0:310420:3597

0:359720:4718

0.1041 0:022820:1166

0:116620:1639

0:163920:2256

0:225620:2746

0:274620:3358

0:335820:3837

0:383720:4771

0.1175

Y. Yang et al. / Journal of Sound and Vibration 282 (2005) 1293–13071304
the nodal line, the control force generated by the actuator will suppress the vibration on one side,
but accelerate the vibration on the other side. Thus the entire control effect contributed by the
control force is weakened.
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Case 2: To consider the first several vibration modes simultaneously: The optimal geometric
distributions of the piezoelectric patches are shown in Table 4. It can be found from Table 4 that,
when the number of piezoelectric patches used is identical with the number of regions separated
by the nodal lines of all these vibration modes, the optimal distributions of the patches should be
located within these regions. For example, if 1, 2, 4, and 6 pieces of patch are used for the 1st, the
1st and 2nd, the 1st, 2nd, and 3rd, and the 1st, 2nd, 3rd, and 4th vibration modes, respectively, the
optimal distributions of the patches are located within the regions separated by the nodal lines. It
can be schematically shown in Fig. 7, in which the dashed lines denote the nodal lines of the
vibration modes and the areas filled with diagonal lines represent the piezoelectric patches bonded
on the beam.
However, for other numbers of patches used, it does not comply with this rule. The explanation

is as follows. As some vibration modes are controlled simultaneously, although it will weaken the
control effect for certain vibration modes if one patch is located across the nodal line of this mode,
it will possibly improve the control effect for the other vibration modes which have no nodal line
across the patch area. Thus, the overall control effect may still be improved and the optimal
distributions of the piezoelectric patches can be located across some nodal lines.
The two observations can be summarized as: (1) for one specific vibration mode, the optimal

distributions of piezoelectric patches should be located within the regions separated by the nodal
lines of this mode; and (2) for several combined vibration modes, if the number of patches is
Fig. 7. Optimal geometric distributions of piezoelectric patches for specific vibration modes of simply supported beam.
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identical with the number of regions separated by the nodal lines of all these modes, the optimal
distributions of the patches should also be located within these regions. Although the above
findings are obtained from computational results and difficult to be demonstrated analytically,
they provide some meaningful knowledge and guidelines for practical design.
6. Conclusions

In this paper, the integrated optimization design of the vibration control system, including the
placement and size of the piezoelectric patches, as well as the feedback control gains has been
formulated. An integer–real-encoded GA has been developed to solve this discrete–continuous
optimization problem. The energy dissipation method has been adopted for the vibration
suppression of the structure. The results of a simply supported beam show that using this
integrated optimization of geometric distribution of the piezoelectric patches and the feedback
control gains, the vibration of the structure can be effectively suppressed. It can be concluded that
when more pieces of patch are applied, the control effect can be improved. Furthermore, for
optimal vibration control of one specific vibration mode, the optimal distributions of the
piezoelectric patches should be located within the regions separated by the vibration nodal lines,
and for several combined vibration modes, only when the number of piezoelectric patches used is
identical with the number of regions separated by the nodal lines of all these modes, the optimal
distributions of the patches are located within these regions.
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